The AI Canon
A curated reading list for understanding AI, machine learning, and LLMs.
Reading List
A16z offers the "AI Canon": https://a16z.com/ai-canon/
What is ChatGPT doing and why does it work? https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/
What's a "vector" in the context of AI? https://www.pinecone.io/learn/
Prompt engineering guide: https://www.promptingguide.ai/
OpenAI Cookbook: https://github.com/openai/openai-cookbook/tree/main
Chain-of-thought: https://arxiv.org/abs/2201.11903
Sparks of AGI: https://arxiv.org/pdf/2303.12712
A survey of LLMs: https://arxiv.org/pdf/2303.18223v4
Chinchilla's implications: https://www.lesswrong.com/posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications
AI for FSD at Tesla: https://www.youtube.com/watch?v=hx7BXih7zx8
Predictive learning: https://www.youtube.com/watch?v=Ount2Y4qxQo&t=1072s
Reinforcement Learning: https://www.youtube.com/watch?v=hhiLw5Q_UFg
Reinforcement Learning from Human Feedback (RLHF): https://huyenchip.com/2023/05/02/rlhf.html
Illustrated Stable Diffusion: https://jalammar.github.io/illustrated-stable-diffusion/
Built GPT: https://www.youtube.com/watch?v=kCc8FmEb1nY
Annotated Transformer: https://nlp.seas.harvard.edu/annotated-transformer/
Stanford NLP: https://www.youtube.com/playlist?list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ
Stanford ML: https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU
Convolutional Neural Nets: https://cs231n.github.io/
Backpropagation, Neural Nets: https://www.youtube.com/watch?v=i94OvYb6noo
Word2Vec: https://towardsdatascience.com/word2vec-explained-49c52b4ccb71
Practical Deep Learning for Coders: https://course.fast.ai/Lessons/lesson1.html
Wolfram Alpha Neural Net Repo: https://resources.wolframcloud.com/NeuralNetRepository
Wolfram Language: https://www.wolfram.com/language/
Wolfram Cloud: https://www.wolframcloud.com/
Wolfram + ChatGPT: https://writings.stephenwolfram.com/2023/01/wolframalpha-as-the-way-to-bring-computational-knowledge-superpowers-to-chatgpt/
Neuromorphic Engineering: https://en.wikipedia.org/wiki/Neuromorphic_engineering
Application-specific Integrated Circuit: https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
Building LLM applications for production: https://huyenchip.com/2023/04/11/llm-engineering.html
Voyager: https://arxiv.org/pdf/2305.16291
Rectifier: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
ML/AI Research Papers: https://github.com/Coder-World04/ML-AI-Research-Papers---Solved